Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations.

نویسندگان

  • Robert B Best
  • Susan B Fowler
  • José L Toca Herrera
  • Annette Steward
  • Emanuele Paci
  • Jane Clarke
چکیده

Titin I27 shows a high resistance to unfolding when subject to external force. To investigate the molecular basis of this mechanical stability, protein engineering Phi-value analysis has been combined with atomic force microscopy to investigate the structure of the barrier to forced unfolding. The results indicate that the transition state for forced unfolding is significantly structured, since highly destabilising mutations in the core do not affect the force required to unfold the protein. As has been shown before, mechanical strength lies in the region of the A' and G-strands but, contrary to previous suggestions, the results indicate clearly that side-chain interactions play a significant role in maintaining mechanical stability. Since Phi-values calculated from molecular dynamics simulations are the same as those determined experimentally, we can, with confidence, use the molecular dynamics simulations to analyse the structure of the transition state in detail, and are able to show loss of interactions between the A' and G-strands with associated A-B and E-F loops in the transition state. The key event is not a simple case of loss of hydrogen bonding interactions between the A' and G-strands alone. Comparison with Phi-values from traditional folding studies shows differences between the force and "no-force" transition states but, nevertheless, the region important for kinetic stability is the same in both cases. This explains the correspondence between hierarchy of kinetic stability (measured in stopped-flow denaturant studies) and mechanical strength in these titin domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steered molecular dynamics studies of titin I1 domain unfolding.

The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band mod...

متن کامل

Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.

The mechanical unfolding of an immunoglobulin domain from the human muscle protein titin (TI I27) has been shown to proceed via a metastable intermediate in which the A-strand is detached. The structure and properties of this intermediate are characterised in this study. A conservative destabilising mutation in the A-strand has no effect on the unfolding force, nor the dependence of the unfoldi...

متن کامل

A simple method for probing the mechanical unfolding pathway of proteins in detail.

Atomic force microscopy is an exciting new single-molecule technique to add to the toolbox of protein (un)folding methods. However, detailed analysis of the unfolding of proteins on application of force has, to date, relied on protein molecular dynamics simulations or a qualitative interpretation of mutant data. Here we describe how protein engineering Phi value analysis can be adapted to chara...

متن کامل

High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations.

The mechanical unfolding of the muscle protein titin by atomic force microscopy was a landmark in our understanding of single-biomolecule mechanics. Molecular dynamics simulations offered atomic-level descriptions of the forced unfolding. However, experiment and simulation could not be directly compared because they differed in pulling velocity by orders of magnitude. We have developed high-spe...

متن کامل

Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.

Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 330 4  شماره 

صفحات  -

تاریخ انتشار 2003